
www.zoho.com/developer

Building a
vertical application
using

Developer

Training Material:

Training Material - Building a Vertical Application

2

CONTENTS

 Introduction to training

 = Zoho Developer Console

 = Getting started with development

 = About Garage CRM

 Defining your data entities

 = Defining data entities on the console

 = Do it yourself: create your first app

 Describing each data entity

 = Do it yourself: Hands on exercises

 Setting access permissions for your app

 = Do it yourself: Create a new profile

 Listing and filtering data in modules:

 = Do it yourself: Creating a custom list view

 Listing all related data - Related Lists

 = Do it yourself - Create a Related List

 Advanced customization - Setting up automated processes

 Adding custom buttons to your pages

 Custom Functions

 = How a custom function works

 Integrating your app with other services

 = Creating custom variables for your app

 = Do it yourself: Building a Zillow integration

 Building more contextual integrations - widgets

 = What are widgets

 = Examples

 = How to create a widget

 = Do it yourself: Embedding a weather widget in your app

 Building mobile apps for your application

 = Steps to build a hello world Android app

Training Material - Building a Vertical Application

3

Introduction to Training
Welcome to the training guide of the Zoho Developer cloud platform.

In this guide, we’ll see how you can build your business applications on our

platform without facing technical complexities in coding,

hosting, and operating your application.

Zoho Developer Console

Zoho Developer is a cloud platform and development console, which lets you easily, build,

brand, and sell robust industry-specific applications on top of Zoho’s existing cloud

infrastructure. You can also use the console to create functionalities that can be made

available to users of Zoho’s suite of cloud products.

Getting started with development:

The Zoho Developer platform saves your developers time and effort by taking care of

low-level system details while providing them with multiple prebuilt advanced features that

can become a part of your cloud application. Any app you build on the console will store and

work with data that is particular to your choice of industry. For example, if you build an app

for real estate, it will have the power to work with real estate data like property information,

documents, handover processes, inventory, etc.

In this guide, we will cover each aspect of developing on the Zoho Developer Console by

comparing with a sample CRM for Garages - Garage CRM.

About Garage CRM:

Garage CRM is an application for garage owners to automate all their service processes.

It helps them to manage information about customers and vehicles, schedule maintenance

jobs, manage their field service operations, handle emergency maintenance jobs, generate

and share paperless job cards and bills for the service done, maintain vehicle service

histories, and manage inventory of spares.

Training Material - Building a Vertical Application

4

Defining your data entities
Before you head into the console and start to develop your application, it is essential for you

to clearly define the data entities that form a part of your app. Think of your application as a

database which works with different types of data present in separate tables. You need to

define what each column contains, what type of action can be performed on the data in these

tables, and what sort of relationships exist between multiple tables.

For example, here’s how data entities are defined in our Garage CRM:

Garage CRM was built to serve the requirements of various types of automotive garages like

single authorized, multi-brand authorized and independent garages. Before starting to build

the application, a list of features that we needed was compiled.

Each of these functions require data entities to be handled by the Garage CRM,

these entities include:

 = Customers = Vehicles

 = Appointments = Job Cards

 = Repair Bills = Technicians

 = Cases

This list included:

= Digitized job cards

= Inventory management for spare parts

= Generating bills and invoices

= Maintaining a database of customers and their vehicles

= Assigning technicians to each job order

= Reaching customers through SMS and email

Training Material - Building a Vertical Application

5

These data entities form the backbone of the application. While creating a Garage CRM on

our console, you shouldn’t be burdened with database programming to store and retrieve

information about each entity. Any feature or use case for your application can be engineered

once you have these entities covered.

For example, here’s how you can handle incoming service requests via Garage CRM:

There are three types of service requests usually handled by garages - Scheduled

appointments, unscheduled services, and emergency services.

 Scheduled appointments:

 Garage CRM stores information on all appointments made by customers. Appointment

 information can either be sourced from calls received by the garage’s call center or

 taken automatically from any request submitted via a webform. Each appointment has

 information about the type of service required and it is associated to customer and

 vehicle details present in the application.

 Unscheduled services:

 When a customer approaches a garage without having set an appointment, a new

 customer record is created in Garage CRM in case it is a first time visit. A job card is

 created for the service required and a service technician is assigned to the job.

 Emergency services:

 In case of emergency services like breakdowns or collisions, a field service agent is

 assigned to the location of the emergency after getting the exact location from the

 customer. This assignment can be automated in Garage CRM by using a dispatcher

 functionality to pick the nearest available service operator and assign them to the

 point t=of emergency.

Training Material - Building a Vertical Application

6

Defining your data entities on the console:

You can map each data entity to Zoho Developer’s most basic component - Modules.

Modules act as containers and store all the data entities that are part of your application.

Though there are underlying databases for every app you create, Zoho Developer lets you

handle the front-end requirement of consolidating similar information into actionable datasets.

Your application will have a number of tabs lined horizontally at the top of the interface. These

tabs are the modules created to input and store data. Modules can by connected to each

other by means of creating ‘relationships’. A record present inside one module can be related

to one in a different module and this relationship can be tracked in your application.

For example, every vehicle that is stored in Garage CRM under the ‘Vehicles’ module needs

to be associated to the respective vehicle owner under the ‘Customers’ module to

understand which customer owns the vehicle being serviced, and the number of vehicles

owned by the customer. We created a component known as a ‘Lookup Field’ under the

‘Vehicles’ module, to associate a vehicle to a vehicle owner record present in the ‘Customers’

module.

Every customer record will have a component known as Related List to display all vehicles

owned by that particular customer. We’ll see more about these components as we go further

in this guide.

For example, Garage CRM uses a dedicated ‘Customers’ module to get all customer

information into the app. We customized the prebuilt ‘Contacts’ module to handle customer

data as it matched out requirements. No prebuilt modules could be used for creating a

‘Vehicles’ module to get customer vehicle data, so we built it from scratch.

We were able to decide that the ‘Contacts’ module closely matched what we need to be

stored in Garage CRM’s ‘Contacts’ module because we had clearly described what we

needed from that particular data entity, before heading into app development.

Training Material - Building a Vertical Application

7

The following is a list of all modules we created for Garage CRM; You’ll read more about the

‘Profile Permissions’ section in the sections to come.

MODULE NAME NATURE OF THE MODULE PROFILE PERMISSIONS

Customers Renamed from Contacts Admin, Service Advisor

Vehicles Custom module Admin, Service Advisor,

 Technician

Job Cards Custom module Admin, Service Advisor,

 Technician

Repair Bills Renamed from Invoices Admin, Service Advisor

Items Renamed from Products Admin, Service Advisor

Purchase Orders Prebuilt Module Admin, Service Advisor

Vendors Prebuilt Module Admin, Service Advisor

Reports Prebuilt Module Admin, Service Advisor

Dashboards Prebuilt Module All profiles

Customer Rating Custom module Admin, Service Advisor

OBD Alarm Custom module Admin, Service Advisor

Service Check List Custom module Admin, Service Advisor

Service Tasks Custom module Admin, Service Advisor,

 Technician

Case Custom module Admin, Service Advisor,

 Technician

Training Material - Building a Vertical Application

8

Do it yourself - Create your first app

Now that you have been introduced to Zoho Developer’s modules, its time for you to create

your first app.

1. Login to developer.zoho.com

2. Select the Access Console option under ‘CRM for Verticals’ in your console home page.

3. Click on the Create App button and enter the following details for your sample application.

 = Application Name: Sample Garage App

 = Application URL: samplegarageapp.zohoplatform.com

 = Category: Automotive

 = Short Description: My first test application.

4. Uncheck every other box apart from Leads, Contacts, and Products. These will be your choice

 of prebuilt modules to start with, this is not a permanent selection as you can add more modules

 anytime during development.

5. You have successfully started your first application! Head to the ‘Company Details’ section in the

 menu on your left and update fiscal year, business hours, currency, and location information of

 your fictional organization.

Describing each data entity
While deciding which data entities are going to be included in your application and assigning modules

for each one, you need to understand how a module works for your application. Data in a module is

stored as a collection of records displayed to users in a list view. Inside a module. each record in the

list view consists of a details page which receives and stores information through custom fields. Users

can add data to each record by populating custom fields present in the details page.

In order for you to decide how your record page’s layout is to look like, and what custom fields are

going to be a part of your application, you need to clearly describe your data entities and define what

all information is required to constitute one record.

For example, every customer record in Garage CRM will have information on the service advisor

assigned to the customer, the customer’s contact information, address details, vehicles owned by the

customer, and job cards under their name.

https://developer.zoho.com/portal/vineeshlal/home

Training Material - Building a Vertical Application

9

All of this information is sourced using components known as custom fields. There are two

types of custom fields that can become a part of your app - Input fields and lookup fields.

Input Fields:

Input fields serve the purpose of getting various types of information into your records.

Zoho Developer comes with a drag-and-drop page builder that you can use to add any sort

of input field into your record page’s layout. You don’t have to create input validations for any

field you add as the platform takes care of all validations necessary for your app. You can also

define the default input value to be present on any field previous to input by the user. The

platform also facilitates creating inter-dependent pick lists that make user input easier.

For example, the records page in Garage CRM’s Vehicles module has two pick lists named

‘Car Brand’ and ‘Car Model’ respectively.

When the user selects a particular car brand, say Ford, from the pick list, the second list is

populated with only Ford’s car brands for the user to choose from. This inter-dependent pick

list method saves users a lot of time in selecting the right value and also offers a clean user

experience.

Lookup fields:

Unlike input fields, lookup fields aren’t meant to get and store data from your application’s

users. Instead, they act as fields that track relationships between records present in different

modules. Lookup fields are present alongside the input fields in your page layout so that

users can ‘look up’ the relationship that record shares with other records.

INPUT FIELDS LOOKUP FIELDS

Text, integers, check boxes, multi-select,

pick-lists, date and time, auto-number,

and formula fields.

One-to-one lookup fields, one-to-many

lookup fields.

Training Material - Building a Vertical Application

10

There are two types of relationships which can be mapped into lookup fields:

 1. One-to-one lookups:

 These lookups capture the relationship shared by one record to a single

 other record. This means a record cannot be associated to more than

 one relationship. For example, a one-to-one lookup is used to associate

 a job card with one invoice. As it doesn’t make sense to have multiple

 invoices for the same job card.

 2. One-to-many lookups:

 They are used to capture the relationship between one record and

 multiple other records present in another module. For example, a

 customer record in Garage CRM is associated to multiple records of

 vehicles using one-to-many lookups, if that customer is the owner of

 multiple vehicles that have been serviced in the garage.

 One-to-many lookups only associate a record with many records that are

 present in the same module as we cannot associate a vehicle to an

 owner, a job card, and an invoice, using the same field.

When multiple vehicles are associated to a customer using lookups, these relationships are

displayed inside the customer’s record page in Garage CRM using a component known as

Related List.

Training Material - Building a Vertical Application

11

The table below lists all the custom fields that have been created in each module of

Garage CRM:

MODULES CUSTOM FIELDS TYPE

Customers - general section Person’s Name Single Line

Customer GSTN Single Line

Country of Birth Single Line

Company Single Line

Job Title Single Line

FCustomers - Address

Information
Country Dropdown Menu

State Dropdown Menu

City Dropdown Menu

Street Address Single Line

Vehicles - general section Vehicle Contact Look up

Color Dropdown Menu

Registration Number Single Line

Manufacturer Dropdown Menu

Engine Number Single Line

Car Model Dropdown Menu

Chassis Number Single Line

Training Material - Building a Vertical Application

12

Fuel Type Dropdown Menu

Transmission Dropdown Menu

Fuel Capacity Single Line

Last Service Date Date

Vehicle Capacity Single Line

Next Service Date Date

Engine Displacement Single Line

Distance Travelled Single Line

Total Distance Travelled

(till day)
Single Line

Last Service Done

(odometer reading)
Single Line

Next Service Due

(odometer reading)
Single Line

Kilometres Remaining Till

Next Service
Single Line

Vehicles - OBD Section Device Identification Single Line

Device Type Dropdown Menu

SIM Mobile Number Single Line

Work Mode Dropdown Menu

Training Material - Building a Vertical Application

13

Vehicles - Insurance & Pollu-

tion Details
Insurance Company Dropdown Menu

Pollution Expiration Date Date

Insurance Expiration Date Date

Policy Number Single Line

IDV value Currency

Place of Issue Single Line

Job Cards - general section Customer Name Lookup

Service IN Date Date

Service Type Dropdown Menu

Vehicle Lookup

Due Date

Kilometres Travelled

Date

Number

Service Status Dropdown Menu

Registration Number Single Line

Pick Up Date & Time Date/Time

Rough Estimate Single Line

Driver Name Single Line

Total Amount Single Line

Total Time Spent On

Service (in hrs)

Single Line

Arrived Service Type Single Line

Job Cards - Complaints and

Damage Details
Existing Damages Multi Line

Complaints Multi Line

Training Material - Building a Vertical Application

14

Job Cards - Additional Services Alignment and Balancing Checkbox

Polish Dropdown Menu

Under Chassis Coating Checkbox

Upgrade Head Lamps Checkbox

Job Cards - Insurance Insurance Claim Checkbox

Surveyor Name Single Line

Insurance Company Dropdown Menu

Surveyor Phone Number Phone

Insurance Approval

Status
Dropdown Menu

Date of Survey Date

Insurance Amount Currency

Repair Bills - general

section
Repair Invoice Number Auto Number

Job Card Lookup

Payment Type Dropdown Menu

Vehicle Registration

Number
Single Line

Credit Card Last 4 Digits Number

Vehicle Lookup

Repair Bills - Spares and Labor

Calculation
Spares Total Currency

Labor Total Currency

CGST and SGST

Tax System
Checkbox

IGST Tax System Checkbox

Training Material - Building a Vertical Application

15

Repair Bills - CGST & SGST Tax

Computation
Spare CGST (%) Percent

Labor CGST (%) Percent

Spare SGST (%) Percent

Labor SGST (%) Percent

Spares CGST Amount Currency

Spares SGST Amount Currency

Repair Bills - IGST

Computation
Spare IGST (%) Percent

Labor IGST (%) Percent

Spare IGST Amount Currency

Labor IGST Amount Currency

Repair Bills - Total Calculation Spares Tax Amount Currency

 Spares Total After Tax Currency

 Labor Tax Amount Currency

 Labor Total After Tax Currency

Repair Bills - Insurance

Primary Inspection
Insurance Estimation Currency

 Surveyor Name Single Line

Insurance Amount

Approved
Currency

 Surveyor Email Address Email

Primary Inspection

Date/Time
Date/Time

 Surveyor Phone Number Phone

Training Material - Building a Vertical Application

16

Repair Bills - Insurance

Primary Inspection
Insurance Estimation Currency

 Surveyor Name Single Line

Insurance Amount

Approved
Currency

 Surveyor Email Address Email

Primary Inspection

Date/Time
Date/Time

 Surveyor Phone Number Phone

Repair Bills - Insurance

Supplementary Inspection

Supplementary

Estimation

 Currency

Supplementary Surveyor

Name
Single Line

Supplementary Amount

Approved
Currency

Supplementary Surveyor

Email Address
Email

Supplementary

Inspection Date/Time
Date/Time

Supplementary Surveyor

Phone Number
Phone

Supplementary Surveyor

Phone Number

Phone

Training Material - Building a Vertical Application

17

Items - Item Information HSN/SAC Code Single Line

Items - Price Information Cost Price Currency

Items - Stock Information Initial Stock Count Decimal

Reorder Stock Calculation Formula

Units Sold Formula

Do it yourself: Hands - On Exercises

You had added three modules - Leads, Contacts, and Products to the Sample Garage App

that you had earlier created. It is now time to configure the page layout and custom fields for

these modules. This exercise requires you to edit the Leads module of your sample app.

We are now to customize the Leads and Contacts modules for mapping the details of trainers

and franchises - Imagine that your garage staff are trained by multiple automobile franchises

on service best practices. The sample garage app now has to store the details of all trainers

and the franchises they are associated to.

1. Inside your sample app’s setup page, click on the Modules section from the left menu

 and then click on the Leads module.

2. You will now enter the layout builder view. Hover over the fields to get the ‘edit/delete’

 option.

3. Remove the following fields from the layout:

 = Fax = Title = Skype ID = Phone

4. Once you have removed the fields from the view, make the Title, Mobile, Email and First

 Name fields mandatory.

Training Material - Building a Vertical Application

18

5. Add the following fields to the page layout :

Field Name Type of Field

Lead Auto ID Auto Number

Product Evaluated Lookup (Products Module)

 Lead Rating Number

Setting access permissions
in your app:
Now that you have multiple records, modules, and relationships set up inside your

application, you now need to focus on your application’s data security and user experience.

A crucial part of building a business application is to decide which type of user gets to access

certain data in the app.

For example, Garage CRM’s users range from top level administrators to field service agents.

An administrator will need access to the entire app setup and customization, whereas field

agents are interested in only the emergency jobs assigned to them.

In this case, setting up access permissions not only makes the app data safe from accidental

editing by field agents; it also provides agents with a clean view of only the information they

need. We can give Garage CRM users different profiles – Administrator and Field Agent, to

achieve this.

When building your app on Zoho Developer, you can create multiple user profiles for your

application and customize the app for each profile. Each profile can be assigned to multiple

users but a user can be associated to just one profile.

Training Material - Building a Vertical Application

19

Do it yourself: Create a new profile

Add two new profiles to your sample garage app and name the profiles Service Technician

and Service Adviser.

 = In your app’s setup page, select ‘Permissions’ from your left selection menu.

 = Click on the New Profile button in the Permissions page.

 = Create two new profiles with the required names.

 = You can set permissions for each profile. Play around with the permissions ang give

 these profiles access to any module or field!

Listing and filtering data in modules:
All records stored in each module of your app will have their own List View. List views in

general are a collection of ungrouped, unclassified records that users can sort through, bulk

edit, bulk update, or delete. Your app also contains Zoho’s prebuilt Advanced Filter, which

gives users a more efficient way of searching for data in the app. With a regular filter, your

search is based on field values - for example, all customers whose vehicle is a Ford.

This is pretty straightforward and ordinary. Whereas with advanced filters, you can run more

advanced searches based on the activities associated to the records, such as “Fords that

have been serviced in the past 5 weeks”. Or “Fords without any job cards for the last 6

months”.

Do it yourself: Create a new list view:

Creating a new list view requires you to move away from your apps setup page and into

territory - your sandbox.

The sandbox is a front end view of your app that you can enter by clicking on the Test Your

Application button on your app’s setup page. The sandbox is where you can test any feature

or component that you add to an application. To do that, you need to set up the right test data

inside your app’s sandbox.

Training Material - Building a Vertical Application

20

Create a CSV spreadsheet of multiple leads (The more, the better) and import them into the

leads module of your app. Make sure that your CSV contains information for all the mandatory

fields of your leads page layout. You can also add information for all the non-mandatory fields

in order to get proper list views and filters.

 = Once you’re done importing your test leads, head to the Leads module and you will

 find a prebuilt Advanced Filter on the right of your standard list view.

 = Create a custom list view by filtering your leads based on any combination of
 parameters. All parameters you see on the Advanced Filter are information that is

 brought in from your custom fields.

Listing all related data - Related Lists:
Getting data into modules and displaying them is a static way of using an app, but your

application acts as a dynamic collection of interrelated datasets when it tracks relationships

between the data in each module. You can use Zoho Developer’s Related List component

to map relationships without having to manage any relational databases for your app. Once

created, Related Lists become a part of your record’s page layout.

For example, Garage CRM has a related list named ‘Jobs’ under each record in the Vehicles

module. The related list is used to display details of all open job cards associated to that par-

ticular vehicle.

Do it yourself: Create a related list

In this exercise, we’ll see how you can create a related list between the Leads and Products

module in your sample garage app to see which garage services your leads are interested in.

• Select the Customize option from the left pane of your application’s setup page.

• Select Related List from the list of available options at the top and select Customize.

• In the Related List Columns page, select the Products module from the Modules List.

• Select the fields from the Available Columns list that you want to display in your

 related list.

• Move the selected options to the Selected Columns list and Save.

You’ve successfully created your first related list.

Training Material - Building a Vertical Application

21

Advanced customization -
Setting up automated processes
If you’ve created all the functionalities we’ve discussed till now in your application, you will

have all the modules, custom fields, list views, and lookups needed to store all data and their

relationships. After you have completed these data management steps, setting up workflows

inside your application ensures that you can capture all business processes inside your

application.

Each business has its own unique set of requirements. Workflow rules can be used to

implement customizations suited to the needs of businesses who you target using your

application. When writing a workflow, your workflow rule remains specific to a single module.

You can set conditions and rule criteria to define how you work with data on that particular

module and it’s fields. However, the actions caused by the workflow rule are reflected as data

changes in other modules as well.

Here’s how you can configure a workflow for your app:

Example:

We used a workflow rule in Garage CRM to calculate the distance remaining for a vehicle to

reach its next service checkpoint. The records present in the Vehicles module have fields

named ‘Distance Travelled Till Day and ‘Remaining Kilometers for Next Service’ to get values

for performing this workflow.

Provide Basic Information

Select a Rule Trigger Specify Rule Criteria Associate Actions

Based on a record action:
Create, Edit, Create or Edit, Field Update, Delete

Instant Actions Time Based Actions

Training Material - Building a Vertical Application

22

The input fields that are to be filled in the Vehicles module are

 = Distance Travelled Last Day

 = Total Distance Travelled (till day)

 = Last Service Done (in Kilometers)

 = Remaining Kilometers for Next Service

Using these values, the value for the ‘Remaining Kilometres for Next Service’ is obtained

through an automated workflow.

Going further, if you were to create a new workflow named ‘Distance Update’ in Garage CRM

to mimic the same functionality mentioned earlier, here’s how you can do it:

1. Click Automate in the left pane of your Zoho Developer account’s Vertical CRM page
 and select Workflow

2. In the Rules tab, create a new Rule.

3. Give details for the following sections:

 Basic Information

 Module : Vehicles

 Rule Name : Distance Update

 Status : Check the box as ‘Active’

 (to enable your workflow in the app)

 Add a short description (To make sure you know why you created this workflow)

 Rule Trigger

 Execute based on : Select a Record Action

 Click the Field Update

 Select

 1. “Distance Travelled Last Day” Field

 2. None

 3. None

Training Material - Building a Vertical Application

23

Rule Criteria

Click “This workflow will only be executed the first time the record is edited”

Actions

Click “+” in Call Custom Functions

Copy and paste the following code in the Deluge editor page, click on the ‘Save to’ Button

and save the workflow rule.

The above code is a custom function that you can add to your application. We’ll see custom

functions in more detail in a dedicated section.

vehId = input.vehicle.get(“Vehicles.ID”);

crmResp = zoho.crm.getRecordById(“CustomModule2”, vehId.

toLong());

lastDay = (crmResp.get(“Distance Travelled Last Day”)).

toLong();

totalDistance = (crmResp.get(“Total Distance traveled(till

day)”)).toLong();

totalDistance = (totalDistance + lastDay);

lastService = (crmResp.get(“Last service done(KMS)”)).toLong();

nextService = (crmResp.get(“Next service due in KMS”)).

toLong();

temp = (totalDistance - lastService);

remainingKms = (nextService - temp);

mapp = map();

// info totalDistance;

// info remainingKms;

mapp.put(“Total Distance traveled(till day)”, totalDistance);

mapp.put(“Remaining KMS for next service”, remainingKms);

crmRes = zoho.crm.updateRecord(“CustomModule2”, vehId.to-

String(), mapp);

info crmRes;

Training Material - Building a Vertical Application

24

Adding custom buttons
to your pages
If you have all workflows configured for your app, it can now handle business processes and

automatically update records in all modules. But if someone were to create a new record in

a module and associate it with a record in another module, the user has to create the record

first and then add a lookup to the other record.

The process is time consuming and is even prolonged when someone is creating multiple

records.

Using Custom Buttons can easily solve this particular use-case. They are a component

available in the Zoho Developer Console that can be used to:

 1. Connect different modules present in your app.

 2. Connect your app to third party applications.

Example:

An ‘Add Vehicle’ Custom Button in Garage CRM’s customers module’s list view page lets

users add a new vehicle to the Vehicles module and associate it with a customer at the click

of a button. To do this,

 1. Click Customize in the Left pane of your application.

 2. Click Links and Buttons and select create new button.

 3. Fill up the following details:

 = The module in which you’d like to create the button - Select the Customers

 module.

 = What would you like to name the button - Name the button as ‘Add Vehicle’

 = Where would you like to place the button - Select the ‘List View -

 Button for each record’ from the drop down.

 = What action would you like the button to perform - Select ‘Writing

 Custom Function’ from the options present.

Training Material - Building a Vertical Application

25

Add the following function:

= Include the following code in the editor and name the function as ‘Adding Ve

 hicles’. Save the button.

You can also use Zoho Developer’s Deluge Script Editor to invoke a URL or a widget and

have it as a button action. Zoho supports both static and dynamic URLs, giving you a high

degree of flexibilty. We’ll see more of widgets in the coming sections.

Custom Functions
Custom functions are pieces of code that you can write to automate adding, updating, or

transferring of the records in your application. You can use custom functions to either update

records across multiple modules or use it for or automatically updating data in third-party

applications.

The platform has its own script editor where you can write custom functions using Deluge

Script. Deluge is Zoho’s proprietary scripting language that was designed to help you perform

complex actions with fewer lines of code than with traditional programming languages.

Writing Custom Functions using Deluge doesn’t need much of a learning curve as it was

designed keeping non-programmers in mind. It’s also easy to get started right away if you’re

slightly familiar with Java programming.

constLookUpDelimiter = “||-||-||”; customerId = input.

customer.get(“Contacts.ID”); respo = zoho.crm.getRecordById

(“Contacts”, customerId.toLong()); firstName = respo.get
(“First Name”); if (firstName == null) { firstName = “”; }
LastName = respo.get(“Last Name”); customerName = firstName +
“ “ + LastName; info respo; URLhash = “#Crm_CustomModule1_

COBJ2CF111=” + customerName + constLookUpDelimiter +

customerId; openUrl(“https://myauto.zohosandbox.com/crm/

CreateEntity.do?module=CustomModule1” + URLhash, “New Tab”);

return “”;

Training Material - Building a Vertical Application

26

You can include custom functions inside your app through the following components:

 = Workflows = Schedulers

 = Custom Buttons = Formula Fields

 = Related Lists

How a custom function works:

While creating a custom function, you should be able to call the value of any custom field

inside your apps records, to be able to update the field values. Custom functions make this

possible by using implicit variables to hold values of all fields inside a record. Each module

has a predefined variable name that you can use inside your function. The names of the

implicit variables are same as the module names, but entirely in lower case.

For example, the variable for a Customer module would be ‘customer’.

The following example illustrates retrieving values from a record in the Customer module

using the implicit variable customer.

 customerId = input.customer.get (“Contacts.ID”);

 name = input.customer.get(“First Name”);

 phone = input.customer.get(“Mobile”);

This function would retrieve information from the Customer ID, First Name, and Mobile fields

present in the records inside the Customer module of Garage CRM. While writing custom

functions, you can use the script editor’s ‘Refer Fields’ feature to refer to the list of module

names and fields. Move your mouse pointer to the center-right edge of the Deluge Script

Editor to view the refer fields.

Training Material - Building a Vertical Application

27

Integrating your app with
other services
Zoho Developer provides the infrastructure to integrate your app with third party services like

cloud telephony, document management, payment gateways, or customer support desks. You

can also integrate any of your own custom applications, or proprietary apps that your team

has built already.

You can either

 = Push and sync data between your app and other services.

 = Build contextual integrations between applications using widgets.

 = Integrating your app with other services

 = Creating custom variables for your app

 = Embedding a weather widget in your app

 = Learning mobile SDK

 = Steps to build a hello world Android app

If you want your app to interact with other applications by pushing data and triggering events,

say by getting customer support ticket information of a record in your app or by syncing

online campaign data from Google Adwords, you can use a component known as a

‘Connector’ to do this.

Connectors facilitate integration between multiple applications using two forms of secure

authorization - OAuth and token based authorization protocols. OAuth is an industry-standard,

open-source authorization protocol, which is used to gain partial access to a user’s account

on an HTTP service.

For example, you use OAuth services to sign in to multiple web services using your Google,

Facebook, or LinkedIn account.

Building connectors with OAuth authentication involves covering some complex topics that

aren’t present in this beginner level course. Instead, we’ll focus on integrating using token

based authorization protocols.

Training Material - Building a Vertical Application

28

To integrate with applications that support token based authentication you will have to make

use of custom variables.

Custom variables are components that store static information in your application. Think of

them as a global variable that replaces certain key values in your app - such as any value

stored in your custom field, allowing users to easily make system-wide changes and push

data to other apps by calling the global variable.

To connect your application with a third party service, an auth token has to be created for that

service and made into a custom variable. This process cannot be done by you during the app

development process as a unique auth token is generated by the third party service for every

user. Your app’s users have to get the auth token from the third party service and update it

using custom variables.

Creating custom variables for your app

Here’s how you can create custom variables for your application:

 = Click on the Access Console link under CRM for Verticals, in your Zoho Developer

 dashboard.

 = Select the vertical app that you want to create custom variables for.

 = From the left selection pane, select the Company Settings option.

 = Select the Org Settings option and click on the Create button to create a custom

 variable.

 = Click Save after entering the details for the variable.

There are two types of services which use token based authentication, apps that have a

common token for all account and apps that generate a unique authorization token for every

single account. For apps with a common authorization token, you can add the token under

the Value section of your custom variable and save it. Hiding the field ensures that your users

aren’t displayed information that they don’t have use for.

Your users will now have the integration available once they sign up for the application. For

applications which generate a unique authorization code, you need to leave the Value field

empty for your customers to fetch the auth token and enter the value.

Training Material - Building a Vertical Application

29

Do it yourself: Building a Zillow integration

You can integrate your app with Zillow’s real estate database using a token based integration

model. You need to write connectors and custom functions in order to get the integration

fully working, but for now we’ll focus on the first step of getting it done - creating the custom

variable.

The first step would be to create a Zillow account and generate a unique Zillow key known

as the ZWSID. This ID is used to retrieve and display dynamic content from Zillow using Zillow

API.

You can get your ZWSID from this link:

https://www.zillow.com/webservice/Registration.htm

Now create a custom variable with the following values:

 Field : Zillow Account ID

 API Name : ZWSID

 Value : <Enter your ZWSID>

You have successfully created a Zillow custom variable.

Building more contextual
integrations - widgets
Based on the understanding of Zoho Developer Console you have gained so far, you know

that the console supports building of industry-specific applications without making you

develop from scratch. You can use Zoho Developer’s components to store and handle your

data, handle business processes, and to perform advanced automations.

But what if you have propreitary apps, or third party apps that you want to make an integral

part of your app’s functionality?

Zoho Developer’s Widget SDK is the answer to this challenge. Widget SDK ensures that you

have the resources to bring in third party apps, or any of your own applications and make

https://www.zillow.com/webservice/Registration.htm

Training Material - Building a Vertical Application

30

them reside in your apps components. At times, you might want to include features that are

available in third party apps .The ability to contextually integrate your application with these

external services using custom user interfaces is achieved using widgets.

What are widgets

Widgets are a component of Zoho Developer that lets you surface any external application

into your application’s interface. Instead of just syncing and displaying data, you can embed

the apps into your user interface and let your users work with them from inside your

application’s interface. You can use the widget framework to not only display other apps

inside your apps enviroment, the embedded application also acts on your app’s data in real

time.

Regular integrations built on the console support pushing data and syncing between multiple

applications. If you want a more feature-rich integration for your app, widgets give you the

following advantages:

 = Build a widget using any language of your choice and embed it inside your app.

 = Widgets have access to all of your app data. You can work on a third party app

 using data from your vertical application.

 = Your widget can pull data from any third party service using APIs and display it

 inside your app UI in real time.

 = Beyond just contextually displaying data, widgets let you manipulate and combine

 data from different endpoints from inside the same application.

 = WIdgets support any custom UI of your choice. You can design your oown

 application using third party app API and make it into a widget.

 = Widgets support both server-side and client-side applications. You can make a wid

 get out of an app hosted in any external server and you can also host your widget

 in Zoho’s servers.

Examples

Examples include the Google Drive widget which can be used to drag and drop any file into

your app’s record page to add that file into a Google Drive account. If there are no folders in

Google Drive for that particular record in your application, the widget automatically creates a

new folder for that record name.

Training Material - Building a Vertical Application

31

If you’re building an app for real estate agents or brokers, your users generally spend a lot

of their time switching between Zillow and your app. Now imagine having all the property

listings and Zestimates from Zillow embedded into records in your app. If users have a client

interested in a commercial or residential property in a particular area, they can search Zillow’s

databases to find matching properties, based on your clients requirements.

How to create a widget

To configure a widget in your vertical, you need to create a connected app. The following

steps will guide you through the process in detail.

• Head to your Zoho Developer account at developer.zoho.com and click on

 ‘Access Console’ under the CRM for Verticals section.

• Choose a vertical app that you’ve done already, or start with a sample app from scratch

 by using the ‘Create App’ button on the page. Fill all descriptions and select a couple of

 modules if you’re starting with a new app.

• From the left pane menu, select the Connected Apps option to build your first widget.

 You’ll be prompted to visit our help documentation, open the documentation in a sepa

 rate tab and use it for your reference.

• Provide basic details about your application - like the name of the app, short

 description, type of hosting etc.

• If your app exists already, enter the base URL and sandbox URL details into the console.

 During hands-on widget development, you will receive a file containing a sample app

 for you to get started right away.

• If you are to create an app from scratch to use it as a widget, refer to the help documen

 tation that you were prompted with while entering the Connected Apps page. The docu

 ment will provide all SAML protocol and OAuth related steps for you to follow while

 building the widget, but that goes beyond the reach of this particular guide.

Once you have built the widget, you can embed it into any app component that was listed in

the previous section. You can either choose to host this app in a remote server as a

server-side application, or use Zoho Developer’s Command Line Interface (CLI) to host it as

a client-side application in Zoho’s servers. The CLI provides packaged commands that creates

a .zip file from all of the files present in your application’s folder.

Training Material - Building a Vertical Application

32

Do it yourself: Embedding a weather widget in your app

Now that we know what widgets are and what steps are needed for to build one, its time to

build your first widget. We’ll build a sample weather widget that has the ability to provide

real-time weather information based on the PIN Code or ZIP Code available inside a record.

This widget is embedded as a separate Related List named ‘WeatherWidget’.

Follow the steps below to get this widget into your sample app:

In the Connected Apps page, add the following details:

 Name of the Connected App : Tech Mahindra

 Description : Test weather widget.

 Hosting : Server side application.

 Sandbox URL : https://localhost:4443/

 Production URL : https://localhost:4443/

You have successfully added the widget into your Developer account!

We can now make it a part of a custom Related List.

 = Select Customize from the left menu pane in your console.

 = Click on Related List from the top horizontal selection menu, and select ‘Custom’

 and click on the Add Widgets button.

 = In the page that follows, enter the details of the weather widget and select the

 modules in which you want it to appear in.

 = The widget is now a part of your application. If you had selected the Leads module

 to embed this widget into, all records in that module will have a Related List named

 WeatherWidget that gives information on real-time weather based on the address

 information present in the record.

Training Material - Building a Vertical Application

33

Building mobile apps for your
application
Zoho Developer has an open source mobile SDK kit for Android that provide a bunch of

native libraries that you can use to make secure connections to your application built on the

platform, and quickly create mobile apps. The SDK abstracts all API calls and OAuth 2.0 calls

that are involved in connecting your mobile app with the browser based application built

using Zoho Developer.

To create Android apps using the SDK, you can download the latest version and get stared

right away on your Android Studio account. There’s no customization or setup change that

you need to do to your Zoho Developer account for c7reating an app. Once built, your mobile

apps act independent of the core browser-based app that they interact with, which means

users can create or update any record information using their mobile applications even if they

are not subscribed as users of the core application.

Steps to build a hello world Android app

Before you begin, get the .aar package using the URL below:

https://goo.gl/uvcgNZ

Get the latest version of our android SDK and follow the following steps in your Android

Studio to build your hello world app.

1. Create a new Android Project

2. Add ZCRMAndroid.aar to your library in “app/libs”

Training Material - Building a Vertical Application

34

To include the Android Application Record (AAR), add the following line in build.gradle

(Project)

allprojects {

 repositories {

 jcenter()

 flatDir { dirs “libs”} // this line

 }

}

in build.gradle(App)

android {

packagingOptions {

 exclude “META-INF/LICENSE.txt”

 exclude “META-INF/LICENSE”

 }

}

dependencies {

 compile(name: ‘ZCRMAndroid’, ext: ‘aar’)

 compile ‘org.apache.httpcomponents:httpclient-android:4.3.5’

 // File upload

 compile ‘org.apache.httpcomponents:httpmime:4.3’

}

Training Material - Building a Vertical Application

35

3. Create a new folder named ‘assets’ under “app/src/main/”

4. Add a new file named as ‘app_configuration.properties’ with the code as given below:

In the line ‘appDomai=garagecrm’ as present in the above code, the appDomain property

represents the domain of the vertical app that you have created in the Zoho Developer

Console. Each app is mapped to a certain domain in the pattern domainID.zohoplatform.com

5. In the AndroidManifest.xml, add internet permissions to your application:

6. Remove the intent filter from your base activity since the applications base activity

 will be the login screen.

7. Now that you have the base activity as login, add the parent activity meta.

 Example:

appType=verticalcrm

#apiBaseUrl=https://crm.zoho.com

appDomain=garagecrm // your app domain

mainActivityClass=com.zoho.platform.vcrmtest.MainActivity

authScopes=ZohoCRM.modules.ALL,ZohoCRM.settings.READ,

ZohoCRM.users.READ,ZohoCRM.org.READ

<uses-permission android:name=”android.permission.

INTERNET” />

<activity android:name=”.MainActivity”>

 </activity>

 <meta-data

 android:name=”android.support.PARENT_ACTIVITY”

android:value=”.MainActivity” />

Training Material - Building a Vertical Application

36

8. Add the logout action by extending your main activity with ZCRMBaseActivity. By doing

 this, you get an override method named logout(). You can now add your logout action

 by calling the super.logout() function.

