Ruby SDK

Version 2.X.X

Table of Contents

1.

a b WON

9. Sample Codes
10. Threading

11. Release Notes

OVEIVICW et e e

a. Using the SDK

. Installation of Ruby SDK...................oooiiiiiiie
. Register your Application.......................ccccooooiiiiiiiii
.Configurations..................cccoooiiiiiiiiccee e
. Token Persistence

a. Implementing OAuth Persistence
b. Custom Persistence

c. File Persistence

d. Database Persistence

ANIAlIZAtION. ..o

a. Generating Grant Token

.Class Hierarchy.................ccccooiiiiiie e
. Response & Exceptions.................ccoooviiiiiiiiiic e

a. For GET Requests
b. For POST, PUT, DELETE Requests

a. Multi-threading in Multi-user App
b. Multi-threading in Single user App
c. SDK Sample Code

a. Current Version
b. Previous Version(s)

@ Zoho CRM
zoho.com/crm-

https://writer.zoho.com/writer/open/ozop1951c3b26704f4aa29c51d694190cea28/bookmarks/toc_raxhksejkx6c

Overview

Ruby SDK offers a way to create client Ruby applications that can be integrated with
Zoho CRM. This SDK makes the access and use of necessary CRM APlIs easy. In other
words, it serves as a wrapper for the REST APIs, making it easier to use the services of
Zoho CRM.

A sample of how an SDK acts a middleware or interface between Zoho CRM and a client
Ruby application.

Zoho CRM SDK Client
Middleware Ruby Application

Ruby SDK allows you to:
1. Exchange data between Zoho CRM and the client application where the CRM
entities are modelled as classes.
2. Declare and define CRM API equivalents as simple functions in your Ruby
application.
3. Push data into Zoho CRM by accessing appropriate APIs of the CRM Service.

Using the SDK

Add the below line in your client app Ruby files, where you would like to make use of the
Ruby SDK.

1 require 'ZCRMSDK'

Through this line, you can access all the functionalities of the Ruby SDK.

@ Zoho CRM
zoho.com/crm-

Note

e The access and refresh tokens are environment-specific and domain-specific.
When you handle various environments and domains such as Production,
Sandbox, or Developer and IN, CN, US, EU, or AU, respectively, you must use the
access token and refresh token generated only in those respective
environments and domains. The SDK throws an error, otherwise.

e For example, if you generate the tokens for your Sandbox environment in the
CN domain, you must use only those tokens for that domain and environment.
You cannot use the tokens generated for a different environment or a domain.

Installation of Ruby SDK

RUBY SDK requires Ruby (version 2.6 and above) to be set up in your development
environment.

Including the SDK in your project

Ruby SDK is available through Gem . You can download the gem using:
1 gem install ZCRMSDK

You can include the SDK to your project using:

1 require 'ZCRMSDK'

Register your application

All the Zoho CRM APIs are authenticated with OAuth2 standards, so it is mandatory to
register and authenticate your client app with Zoho.

To register:

1. Go to the site accounts.zoho.com/developerconsole
2. Click Add Client ID.

@ Zoho CRM
zoho.com/crm-

i @, Accounts

Client Name Client ID

PostmanTestl

ViewCust App

Bomgar

API

Credentials

Generated Time

08/03/2017

08/03f2017

01/08/2018

3. Enter the Client Name, Client Domain and Authorized Redirect URL.
4. Select the Client Type as Web based.

Create Zoho Client ID

Client Name

Internal Data Compiler

Client Domain

www.abc.com

Authorized redirect URIs

https://www.abc.com

Client Type

| WEB Based

5. Click Create.
6. Your Client app would have been created and displayed by now.

@ Zoho CRM
zoho.com/crm-

7. The newly registered app's Client ID and Client Secret can be found by clicking
Options - Edit.

Note
Options is the three dot icon at the right corner.

Registered applications will receive the following credentials:

Client id — The consumer key generated from the connected app.

Client Secret — The consumer secret generated from the connected app.
Redirect URI — The Callback URL that you registered during the app registration.

Configuration

Before you get started with creating your Ruby application, you need to register your
client and authenticate the app with Zoho.

Follow the below steps to configure the SDK.
1. Create an instance of the SDKLog::Log Logger Class to log exception and API
information.

1
2

4

5

6 log =
SDKLog: :Log.initialize(Levels::INFO,"/Users/user_name/Documents/r
ubysdk_log.log")

2. Create an instance of UserSignature that identifies the current user.

1

@ Zoho CRM
zoho.com/crm-

2 user_signature = UserSignature.new('abc@zohocorp.com')

3. Configure the API environment which decides the domain and the URL to make API
calls.

1 #Configure the environment

2 #which is of the pattern DC::Domain::Environment

3 #Available Domains: USDataCenter, EUDataCenter, INDataCenter,
CNDataCenter, AUDataCenter

4 #Available Environments: PRODUCTION, DEVELOPER, SANDBOX

Ul

6 environment = DC::USDataCenter: :PRODUCTION

4. Create an instance of OAuthToken with the information that you get after registering
your Zoho client.

#Create a Token dinstance

#1 -> OAuth client -d.

#2 -> OAuth client secret.

#3 -> REFRESH/GRANT token.

#4 -> Token type(REFRESH/GRANT).

#5 -> OAuth redirect URL. (optional)

o ~No b~ WNBRE

token = Authenticator::0AuthToken.new("clientId", "clientSecret",

"REFRESH/GRANT token", TokenType::REFRESH/GRANT, "redirectURL")

9 Token token = new OAuthToken("clientId", "clientSecret",
"REFRESH/GRANT token", TokenType.REFRESH/GRANT, "redirectURL");

5. Create an instance of TokenStore to persist tokens used for authenticating all the
requests.

1 #Create an instance of TokenStore.

#1 -> DataBase host name. Default "localhost"
#2 -> DataBase name. Default "zohooauth"

#3 -> DataBase user name. Default "root"

#4 -> DataBase password. Default ""

#5 -> DataBase port number. Default "3306"

o ~No b~ WN

tokenstore = Store::DBStore.new("hostName", "dataBaseName",

@ Zoho CRM
zoho.com/crm-

9
10

11
12

"userName", "password", "portNumber")
tokenstore =
Store::FileStore.new("/Users/user_name/Documents/ruby_sdk_token.t

thl)

tokenStore = CustomStore.new

6. Create an instance of SDKConfig containing the SDK configuration.

N B

(&)}

10

11
12
13

14
15
16

17
18
19

20

auto_refresh_fields

if true - all the modules' fields will be auto-refreshed -in
the background, every hour.

if false - the fields will not be auto-refreshed in the
background. The user can manually delete the file(s) or refresh
the fields using methods from ModuleFieldsHandler
(Util::ModuleFieldsHandler)

#

pickListValidation

if true - value for any picklist field will be validated
with the available values.

if false - value for any picklist field will not be
validated, resulting in creation of a new value.

#

open_timeout

Number of seconds to wait for the connection to open
(default 60 seconds)

#

read_timeout

Number of seconds to wait for one block to be read (via one
read(2) call) (default 60 seconds)

#

write_timeout

Number of seconds to wait for one block to be written (via
one write(2) call) (default 60 seconds)

#

keep_alive_timeout

Seconds to reuse the connection of the previous
request(default 2 seconds)

#

@ Zoho CRM
zoho.com/crm-

21

22 sdk_config =
SDKConfig: :Builder.new.auto_refresh_fields(false).pick_1list_valid
ation(true) .open_timeout(60).read_timeout(60).write_timeout(60).k
eep_alive_timeout(2).build

7. Set the absolute directory path to store user specific files containing module fields
information in resourcePath.

1 resource_path = "/Users/user_name/Documents/rubysdk-application"

8. Create an instance of RequestProxy containing the proxy properties of the user.

1 request_proxy = RequestProxy.new("proxyHost", "proxyPort",
"proxyUser", "password")

9. Initialize the SDK and make API calls.

Token Persistence

Token persistence refers to storing and utilizing the authentication tokens that are
provided by Zoho. There are three ways provided by the SDK in which persistence can
be applied. They are custom persistence, file persistence, and DB persistence (default).

Implementing OAuth Persistence

Once the application is authorized, OAuth access and refresh tokens can be used for
subsequent user data requests to Zoho CRM. Hence, they need to be persisted by the
client app.

The persistence is achieved by writing an implementation of the inbuilt TokenStore
interface, which has the following callback methods.
e get_token(UserSignature user, Token token) - invoked before firing a request to
fetch the saved tokens. This method should return an implementation of the
Token interface object for the library to process it.
e save_token(UserSignature user, Token token) - invoked after fetching access and

@ Zoho CRM
zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/initialize.html

refresh tokens from Zoho.

e delete_token(UserSignature user, Token token) - invoked before saving the latest
tokens.

e get_tokens() - The method to retrieve all the stored tokens.

e delete_tokens() - The method to delete all the stored tokens.

Custom Persistence

To use Custom Persistence, the user must extend Store::TokenStore and include the
methods.

Here is the code:

1 using System;

2 require 'ZCRMSDK'

3 # This class stores the user token details to the file.

4 class TokenStore

5 # This method 1is used to get the user token details.

6 # @param user A UserSignature class instance.

7 # @param token A Token class instance.

8 # @return A Token class instance representing the user token
details.

9 # @raise SDKException

10 def get_token(user, token); end

11

12 def get_tokens; end

13

14 # This method is used to store the user token details.

15 # @param user A UserSignature class 1instance.

16 # @param token A Token class -instance.

17 # @raise SDKException

18 def save_token(user, token); end

19

20 # This method 1is used to delete the user token details.

21 # @param user A User class instance.

22 # @param token A Token class -instance.

23 # @raise SDKException

24 def delete_token(token); end

25

26 def delete_tokens; end

@ Zoho CRM
zoho.com/crm-

27 end

File Persistence

In case of default File Persistence, the user can persist tokens in the local drive, by
providing the the absolute file path to the FileStore object.

The file contains:
e user_mail
e client_id

e refresh_token

e access_token

e grant_token
e expiry_time

Here is the code to create a FileStore object:

1

2

3 tokenstore =
FileStore.new("/Users/user_name/Documents/ruby_sdk_token.txt")

Note
You must not include "zcrm_oauthtokens.txt" in the path.

Database Persistence

If you want to use database persistence, you can use MySQL. The DB persistence
mechanism is the default method in Ruby SDK.

e The MySQL should run in the same machine

e The database name should be zohooauth.

e There must be a table oauthtokens with columns
id(int(11))
user_mail(varchar(255))
client_id(varchar(255))
refresh_token(varchar(255))
access_token(varchar(255))
grant_token(varchar(255))

@ Zoho CRM
zoho.com/crm-

m expiry_time(varchar(20))

Note
e The default MySQL persistence requires MySQL?2 to be installed. Use the below
command to install MySQL2.

1 gem install mysql2 -v 0.5.2

e The order of precedence for token persistence is custom, file, followed by DB
persistence. That is, if you provide the details for custom persistence (in
persistence_handler_class_path) and file persistence details (in
token_persistence_path), then custom persistence is given priority over file.

MySQL Query

1 create table oauthtoken(id int(11l) not null auto_increment,
user_mail varchar(255) not null, client_id varchar(255),
refresh_token varchar(255), access_token varchar(255),
grant_token varchar(255), expiry_time varchar(20), primary key
(id));

2 alter table oauthtoken auto_increment = 1;

Here is the code to create a DBStore object:

~N o o0h~ N R

@ Zoho CRM
zoho.com/crm-

Store: :DBStore.new()
Store::DBStore.new("hostName", "dataBaseName",
"userName", "password", "portNumber'")

8 +tokenstore

9 tokenstore

Initializing the Application

To access the CRM services through the SDK, you must first authenticate your client app.
Generating the grant token

For a Single User

The developer console has an option to generate grant token for a user directly. This option may
be handy when your app is going to use only one CRM user's credentials for all its operations or
for your development testing.

1. Login to your Zoho account.

2. Visit https://api-console.zoho.com

3. Click Self Client option of the client for which you wish to authorize.

4. Enter one or more (comma-separated) valid Zoho CRM scopes that you wish to
authorize in the "Scope" field and choose the time of expiry. Provide
“aaaserver.profile.READ” scope along with Zoho CRM scopes.

5. Copy the grant token that is displayed on the screen.

Note
e The generated grant token is valid only for the stipulated time you chose while
generating it. Hence, the access and refresh tokens should be generated within
that time.
e The OAuth client registration and grant token generation must be done in the
same Zoho account's (meaning - login) developer console.

For Multiple Users

For multiple users, it is the responsibility of your client app to generate the grant token from the
users trying to login.
e Your Application's Ul must have a "Login with Zoho" option to open the grant token URL
of Zoho, which would prompt for the user's Zoho login credentials.

@ Zoho CRM
zoho.com/crm-

https://api-console.zoho.com/

Get Started today.

Email
Password

[] Iagree to the Terms of Service and Privacy Policy.

GET STARTED

or using

Z LOGIN WITH ZOHO

e Upon successful login of the user, the grant token will be sent as a param to your
registered redirect URL.

Note

e The access and refresh tokens are environment-specific and domain-
specific. When you handle various environments and domains such as
Production, Sandbox, or Developer and IN, CN, US, EU, or AU, respectively, you
must use the access token and refresh token generated only in those
respective environments and domains. The SDK throws an error, otherwise.

e For example, if you generate the tokens for your Sandbox environment in the
CN domain, you must use only those tokens for that domain and
environment. You cannot use the tokens generated for a different
environment or a domain.

@ Zoho CRM
zoho.com/crm-

Initialize the SDK using following code

1 require 'ZCRMSDK'

2 class Initialize

3 def self.initialize()

4 # Create an 1instance of Log::SDKLog Class that takes two
parameters

5 # 1 -> Level of the log messages to be logged. Can be configured
by typing Levels "::" and choose any level from the 1list displayed.

6 # 2 -> Absolute file path, where messages need to be logged.

7 log =
SDKLog: :Log.initialize(Levels::INFO," /Users/user_name/Documents/rubysdk_
log.log")

8

9 #Create an UserSignature instance that takes user Email as
parameter

10 user_signature = UserSignature.new('abc@zohocorp.com')

11

12 # Configure the environment

13 # which is of the pattern Domain.Environment

14 # Available Domains: USDataCenter, EUDataCenter, INDataCenter,
CNDataCenter, AUDataCenter

15 # Available Environments: PRODUCTION, DEVELOPER, SANDBOX

16 environment = DC::USDataCenter.PRODUCTION

17

18 #Create a Token instance

19 #1 -> OAuth client 1id.

20 #2 -> OAuth client secret.

21 #3 -> REFRESH/GRANT token.

22 #4 -> Token type(REFRESH/GRANT).

23 #5 -> OAuth redirect URL. (optional)

24 token = Authenticator::0AuthToken.new("clientId",
"clientSecret", "REFRESH/GRANT token", TokenType::REFRESH/GRANT,
"redirectURL")

25

26 #Create an 1instance of TokenStore.

27 #1 -> DataBase host name. Default "localhost"

28 #2 -> DataBase name. Default "zohooauth"

29 #3 -> DataBase user name. Default "root"

30 #4 -> DataBase password. Default ""

31 #5 -> DataBase port number. Default "3306"

32

33 tokenstore = Store::DBStore.new("hostName", "dataBaseName",

"userName", "password", "portNumber'")

@ Zoho CRM
- zoho.com/crm-

34
35

36
37
38
39

40

41
42
43

a4

45
46
47

48
49
50

51
52
53

54
55
56

57
58
59

60
61
62

#tokenstore =
Store::FileStore.new("/Users/user_name/Documents/ruby_sdk_token.txt")

auto_refresh_fields

if true - all the modules' fields will be auto-refreshed in the
background, every hour.

if false - the fields will not be auto-refreshed in the
background. The user can manually delete the file(s) or refresh the
fields using methods from ModuleFieldsHandler
(Util::ModuleFieldsHandler)

#

pickListValidation

if true - value for any picklist field will be validated with the
available values.

if false - value for any picklist field will not be validated,
resulting in creation of a new value.

#

open_timeout

Number of seconds to wait for the connection to open (default 60
seconds)

#

read_timeout

Number of seconds to wait for one block to be read (via one
read(2) call) (default 60 seconds)

#

write_timeout

Number of seconds to wait for one block to be written (via one
write(2) call) (default 60 seconds)

#

keep_alive_timeout

Seconds to reuse the connection of the previous request(default 2
seconds)

#

sdk_config =
SDKConfig: :Builder.new.auto_refresh_fields(false).pick_list_validation(t
rue) .open_timeout(60).read_timeout(60).write_timeout(60).keep_alive_time
out(2).build

resource_path = "/Users/user_name/Documents/rubysdk-application”

Create an instance of RequestProxy class that takes the
following parameters

@ Zoho CRM
- zoho.com/crm-

63
64
65
66
67

68
69

70
71
72
73
74
75
76
77
78
79
80
81

82
83

1
2
3
4

->
->
->
->

Host

Port Number
User Name
Password

request_proxy = RequestProxy.new("proxyHost", "proxyPort",
"proxyUser", "password'")

The initialize method of Initializer class that takes the
following arguments

1 -> UserSignature instance

2

H OH H H HF H H
0 N o b~ W

->
->
->
->
->
->
->

Environment instance

Token 1dinstance

TokenStore instance

SDKConfig instance

resourcePath -A String

Log instance (optional)
RequestProxy 1instance (optional)

#The following is the dinitialize method

Initializer.initialize(user, environment, token, store,
sdk_config, resources_path, log, request_proxy)

end
end

You can now access the functionalities of the SDK. Refer to the sample codes to make various
API calls through the SDK.

Class Hierarchy

All Zoho CRM entities are modeled as classes having members and methods applicable to that
particular entity.
The class hierarchy of various Zoho CRM entities in the Ruby SDK is depicted in the following
image.

@ Zoho CRM
zoho.com/crm-

ZOHO CRM RUBY SDK

l 1 L

Aunentestor ket T

SDKException

|

v

[

IHIT
i
H

Header

TI

HeaderMap

Param OAuthToken

FileStore DBStore

> ParameterMap

atl UserSignature

v

SDKConfig

B RequestProxy

Responses and Exceptions

All SDK methods return an instance of the APIResponse class.

Use the data_object to get the returned APIResponse object to obtain the response
handler interface depending on the type of request (GET, POST,PUT,DELETE).

APIResponse<ResponseHandler> and APIResponse<ActionHandler> are the common
wrapper objects for Zoho CRM APIs’ responses.

Whenever the API returns an error response, the response will be an instance of
APIException class.

The following are the wrappers with their handlers for the respective APlIs:

e For operations involving records in Tags:
-APIResponse<RecordActionHandler>

e For getting Record Count for a specific Tag operation:
-APIResponse<CountHandler>

e For operations involving BaseCurrency:
-APIResponse<BaseCurrencyActionHandler>

e For Lead convert operation:
-APIResponse<ConvertActionHandler>

e For Retrieving Deleted record operation:
-APIResponse<DeletedRecordsHandler>

@ Zoho CRM
zoho.com/crm-

For Record image download operation:
-APIResponse<DownloadHandler>

MassUpdate record operation:
-APIResponse<MassUpdateActionHandler>
-APIResponse<MassUpdateResponseHandler>

For GET Requests

The data_object variable of the returned APIResponse instance returns the
response handler interface.

The ResponseHandler encompasses the ResponseWrapper class (for
application/json responses), FileBodyWrapper class (for file download
responses), and the APIException class.

The CountHandler encompasses the CountWrapper class (for application/json
responses) and the APIException class.

The DeletedRecordsHandler encompasses the DeletedRecordsWrapper class
(for application/json responses) and the APIException class.

The DownloadHandler encompasses the FileBodyWrapper class (for file
download responses responses) and the APIException class.

The MassUpdateResponseHandler encompasses the
MassUpdateResponseWrapper class (for application/json responses) and the
APIException class.

For POST, PUT, DELETE Requests

The data_object variable of the returned APIResponse instance returns the
response handler interface.

The ActionHandler encompasses the ActionWrapper class (for application/json
responses) and the APIException class. The ActionWrapper class contains
Property/Properties that may contain one/list of ActionResponse interfaces.
The ActionResponse encompasses the SuccessResponse class (for
application/json responses) and the APIException class.

The ActionHandler interface encompasses the ActionWrapper class (for
application/json responses), and the APIException class.

The RecordActionHandler interface encompasses the RecordActionWrapper
class (for application/json responses), and the APIException class.

The BaseCurrencyActionHandler interface encompasses the

@ Zoho CRM
zoho.com/crm-

BaseCurrency/ActionWrapper class (for application/json responses), and the

APIException class.

e The MassUpdateActionHandler interface encompasses the
MassUpdateActionWrapper class (for application/json responses), and the

APIException class.

e The ConvertActionHandler interface encompasses the ConvertActionWrapper
class (for application/json responses), and the APIException class.

Note

APIException class is returned.

e If the root key of the response is not "data" (errors such as Internal Server Error),
then the ActionResponse interface with either the SuccessResponse class or

under the SDKException class.

Sample Codes

All of Zoho CRM's APIs can be used through the Ruby SDK, to enable your custom
application to perform data sync to the best degree. Here are the sample codes for all

the APl methods available in our SDK.

Attachment Operations

Constructor

Description

Attachments::AttachmentsOperations.ne
w(moduleAPIName, recordld)

Creates an AttachmentsOperations class
instance with the moduleAPIName and
recordld.

Method

Description

get_attachments

To fetch the list of attachments of a

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/attachments-samples.html?src=get_attachments

record.

upload_attachments

To upload attachments to a record.

delete_attachments

To delete the attachments that were
added to a record.

delete_attachment

To delete an attachment that was added
to arecord.

download_attachment

To download an attachment that was
uploaded to a record.

upload_link_attachments

To upload a link as an attachment to a
record

Blueprint Operations

Constructor

Description

BluePrint::BluePrintOperations.new(recor
did, moduleAPIName)

Creates a BluePrintOperations class
instance with the recordld and
moduleAPIName

Method

Description

get_blueprint

To get the next available transitions for
that record, fields available for each
transition, current value of each field, and

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/attachments-samples.html?src=upload_attachments
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/attachments-samples.html?src=delete_attachments
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/attachments-samples.html?src=delete_an_attachment
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/attachments-samples.html?src=download_an_attachment
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/attachments-samples.html?src=upload_link_as_attachment
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/blueprint-samples.html?src=get_blueprint

validation(if any).

update_blueprint To update a single transition at a time

Bulk Read Operations

Method Description

create_bulk_read_job To schedule a bulk read job to export
records that match the criteria.

get_bulk_read_job_details To know the status of the bulk read job
scheduled previously.

download_result To download the result of the bulk read
job. The response contains a zip file.
Extract it to get the CSV or ICS file
depending on the "file_type" you specified
while creating the bulk read job

Bulk Write Operations

Method Description

upload_file To upload a CSV file in ZIP format. The
response contains the "file_id". Use this ID
while making the bulk write request.

create_bulk_write_job To create a bulk write job to insert,
update, or upsert records. The response
contains the "job_id". Use this ID while

@ Zoho CRM
zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/blueprint-samples.html?src=update_blueprint
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/bulk-read-samples.html?src=create_job
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/bulk-read-samples.html?src=get_details_bulk_read
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/bulk-read-samples.html?src=download_result
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/bulk-write-samples.html?src=upload_file
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/bulk-write-samples.html?src=create_job

getting the status of the scheduled bulk
write job.

get_bulk_read_job_details

To know the status of the bulk read job
scheduled previously.

download_result

To download the result of the bulk read
job. The response contains a zip file.
Extract it to get the CSV or ICS file
depending on the "file_type" you specified
while creating the bulk read job

Contact Roles Operations

Method

Description

get_contact_roles

To get the list of all contact roles.

create_contact_roles

To create contact roles.

update_contact_roles

To update contact roles.

delete_contact_roles

To delete contact roles.

get_contact_role

To get specific contact role.

update_contact_role

To update specific contact role.

delete_contact_role

To delete specific contact role

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/bulk-write-samples.html?src=get_details_bulk_write
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/bulk-write-samples.html?src=download_result
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/contact-roles-samples.html?src=get_contact_roles
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/contact-roles-samples.html?src=create_cont_roles
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/contact-roles-samples.html?src=update_cont_roles
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/contact-roles-samples.html?src=del_cont_roles
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/contact-roles-samples.html?src=get_a_cont_role
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/contact-roles-samples.html?src=update_a_cont_role
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/contact-roles-samples.html?src=del_a_cont_role

Currencies Operations

Method

Description

get_currencies

To get the list of all currencies available
for your org.

add_currencies

To add new currencies to your org.

update_currencies

To update the currencies' details of your
org.

enable_multiple_currencies

To enable multiple currencies for your org.

update_base_currency

To update the base currency details of
your org.

get_currency

To get the details of specific currency.

update_currency

To update the details of specific currency

Custom View Operations

Constructor

Description

CustomViews::CustomViewsOperations.n
ew(module)

Creates a CustomViewsOperations class
instance with the moduleAPIName

Method

Description

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/currencies-samples.html?src=get_currencies
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/currencies-samples.html?src=add_currencies
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/currencies-samples.html?src=update_currencies
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/currencies-samples.html?src=enable_mult_currencies
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/currencies-samples.html?src=update_base_currency
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/currencies-samples.html?src=get_a_currency
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/currencies-samples.html?src=update_a_currency

get_custom_views

To get the list of all custom views in a
module.

get_custom_view

To get the details of specific custom view
in a module

Fields Metadata Operations

Constructor

Description

Fields::FieldsOperations.new(module)

Creates a FieldsOperations class instance
with the module

Method Description

get_fields To get the meta details of all fields in a
module.

get_field To get the meta details of specific field in

a module

Files Operations

Method Description

upload_files To upload files and get their encrypted
IDs.

get_file To get the uploaded file through its

@ Zoho CRM
zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/custom-view-samples.html?src=get_cust_views
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/custom-view-samples.html?src=get_a_cust_view
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/fields-samples.html?src=get_fields
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/fields-samples.html?src=get_a_field
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/files-samples.html?src=upload_file
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/files-samples.html?src=get_file

encrypted ID

Layouts Operations

Constructor

Description

Layouts::LayoutsOperations.new(module)

Creates a LayoutsOperations class
instance with the moduleAPIName

Method Description

get_layouts To get the details of all the layoutsin a
module.

get_layout To get the details (metadata) of a specific

layout in a module

Modules Operations

Method

Description

get_modules

To get the details of all the modules.

get_module

To get the details (metadata) of a specific
module.

update_module_by_api_name

To update the details of a module by its
module APl name.

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/layouts-samples.html?src=get_layouts
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/layouts-samples.html?src=get_layout
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/modules-samples.html?src=get_modules
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/modules-samples.html?src=get_a_module
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/modules-samples.html?src=update_by_module_name

update_module_by_id To update the details of a module by its ID

Notes Operations

Method Description

get_notes To get the list of notes of a record.

create_notes To add new notes to a record.

update_notes To update the details of the notes of a
record.

delete_notes To delete the notes of a record.

get_note To get the details of a specific note.

update_note To update the details of an existing note.

delete_note To delete a specific note

Notification Operations

Method Description

enable_notifications To enable instant notifications of actions
performed on a module.

get_notification_details To get the details of the notifications

@ Zoho CRM
zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/modules-samples.html?src=update_module_by_id
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notes-samples.html?src=get_notes
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notes-samples.html?src=create_notes
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notes-samples.html?src=update_notes
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notes-samples.html?src=delete_notes
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notes-samples.html?src=get_note
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notes-samples.html?src=update_note
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notes-samples.html?src=delete_note
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notification-samples.html?src=enable
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notification-samples.html?src=get_notif_details

enabled by the user.

update_notifications

To update the details of the notifications
enabled by a user. All the provided details
would be persisted and rest of the details
would be removed.

update_notification

To update only specific details of a
specific notification enabled by the user.
All the provided details would be
persisted and rest of the details will not
be removed.

disable_notifications

To stop all the instant notifications
enabled by the user for a channel.

disable_notification

To disable notifications for the specified
events in a channel

Organization Operations

Method

Description

get_organization

To get the details of your organization.

upload_organization_photo

To upload a photo of your organization

Profile Operations

Constructor

Description

Profiles::ProfilesOperations.new(OffsetDa

Creates a ProfilesOperations class

@ Zoho CRM
zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notification-samples.html?src=update_notif
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notification-samples.html?src=update_a_notif
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notification-samples.html?src=disable_notif
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/notification-samples.html?src=disable_a_notif
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/organization-samples.html?src=get_org
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/organization-samples.html?src=upload_org_photo

teTime ifModifiedSince)

instance with the value of the If-Modified-
Since header

Method Description
get_profiles To get the list of profiles available for your
organization.
get_profile To get the details of a specific profile
Query (COQL) Operation
Method Description

get_records

To get the records from a module through
a COQL query

Records Operations

Method

Description

get_record

To get a specific record from a module.

update_record

To update a specific record in a module.

delete_record

To delete a specific record from a module.

get_records

To get all records from a module.

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/profile-samples.html?src=get_profiles
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/profile-samples.html?src=get_profile
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/query-samples.html?src=coql
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=get_record
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=update_record
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=delete_record
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=get_records

create_records To insert records in a module.

update_records To update records in a module.
delete_records To delete records from a module.
upsert_records To insert/update records in a module.
get_deleted_records To get the deleted records from a module.
search_records To search for records in a module that

match certain criteria, email, phone
number, or a word.

convert_lead To convert records(Leads to
Contacts/Deals).

get_photo To get the photo of a record.
upload_photo To upload a photo to a record.
delete_photo To delete the photo of a record.
mass_update_records To update the same field for multiple

records in a module.

get_mass_update_status To get the status of the mass update job
scheduled previously.

@ Zoho CRM
zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=create_records
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=update_records
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=delete_records
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=upsert_records
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=get_deleted_records
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=search_records
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=convert
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=get_photo
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=upload_photo
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=delete_photo
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=mass_update
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=mass_update_status

Related List Operations

Method Description
get_record To get a specific record from a module.
Method Description

get_related_lists

To get the details of all the related lists of
a module.

get_related_list

To get the details of a specific related list
of a module

Related Records Operations

Constructor

Description

RelatedRecords::RelatedRecordsOperatio
ns.new(relatedListAPIName, recordld,
moduleAPIName)

Creates a RelatedRecordsOperations
class instance with the
relatedListAPIName, recordld, and
moduleAPIName

Method

Description

get_related_records

To get list of records from the related list
of a module.

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/record-samples.html?src=get_record
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/rel-list-samples.html?src=get_rel_lists
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/rel-list-samples.html?src=get_a_rel_list
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/rel-records-samples.html?src=get_rel_records

update_related_records

To update the association/relation
between the records.

delink_records

To delete the association between the
records.

get_related_record

To get the records from a specific related
list of a module.

update_related_record

To update the details of a specific record
of a related list in a module.

delink_record

To delete a specific record from the
related list of a module

Role Operations

Method Description

get_roles To get the list of all roles available in your
organization.

get_role To get the details of a specific role

Shared Records Operations

Constructor

Description

ShareRecords::ShareRecordsOperations.n
ew(recordld, moduleAPIName)

Creates a ShareRecordsOperations class
instance with the recordld and

@ Zoho CRM
zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/rel-records-samples.html?src=update_rel_records
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/rel-records-samples.html?src=delink
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/rel-records-samples.html?src=get_rel_record
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/rel-records-samples.html?src=update_rel_record
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/rel-records-samples.html?src=delink_single
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/role-samples.html?src=get_roles
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/role-samples.html?src=get_role

moduleAPIName

Method

Description

get_shared_record_details

To get the details of a record shared with
other users.

share_record

To share a record with other users in the
organization.

update_share_permissions

To

e Update the sharing permissions of a
record granted to users as Read-

Write, Read-only, or grant full access.

e Revoke access givento usersto a

shared record.

e Update the access permission to the
related lists of the record that was

shared with the user.

revoke_shared_record

To revoke access to a shared record

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/shared-record-samples.html?src=get_shared_details
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/shared-record-samples.html?src=share
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/shared-record-samples.html?src=update_permission
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/shared-record-samples.html?src=revoke

Tags Operations

Method

Description

get_tags

To get the list of all tags in your
organization.

create_tags

To create tags.

update_tags

To update multiple tags.

update_tag To update a specific tag.
delete_tag To delete a specific tag from the module.
merge_tags To merge two tags.

add_tags_to_record

To add tags to a specific record.

remove_tags_from_record

To remove tags from a record.

add_tags_to_multiple_records

To add tags to multiple records.

remove_tags_from_multiple_records

To remove tags from multiple records.

get_record_count_for_tag

To get the record count for a tag

@ Zoho CRM
zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=get_tags
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=create_tags
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=update_tags
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=update_tag
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=del_tag
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=merge
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=add_to_record
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=remove_from_record
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=add_to_records
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=remove_from_records
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tags-samples.html?src=count

Taxes Operations

Method

Description

get_taxes

To get the taxes of your organization.

create_taxes

To add taxes to your organization.

update_taxes

To update the existing taxes of your
organization.

delete_taxes

To delete multiple taxes from your
organization.

get_tax

To get the details of a specific tax.

delete_tax

To delete a specific tax from your
organization

Territory Operations

Method

Description

get_territories

To get the list of all territories.

get_territory

To get the details of a specific territory

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tax-samples.html?src=get_taxes
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tax-samples.html?src=create_taxes
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tax-samples.html?src=update_taxes
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tax-samples.html?src=delete_taxes
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tax-samples.html?src=get_tax
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/tax-samples.html?src=delete_tax
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/territory-samples.html?src=get_territories
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/territory-samples.html?src=get_territory

Users Operations

Method

Description

get_users

To get the list of users in your
organization.

create_user

To add a user to your organization.

update_users

To update the existing users of your
organization.

get_user

To get the details of a specific user.

update_user

To update the details of a specific user.

delete_user

To delete a specific user from your
organization

Variable Groups Operations

Method

Description

get_variable_groups

To get the list of all variable groups
available for your organization.

get_variable_group_by_id

To get the details of a variable group by
its group ID.

get_variable_group_by_api_name

To get the details of a specific variable
group by its APl name

)

Zoho CRM

zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/user-samples.html?src=get_users
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/user-samples.html?src=add_user
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/user-samples.html?src=update_users
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/user-samples.html?src=get_user
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/user-samples.html?src=update_user
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/user-samples.html?src=delete_user
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variable-groups-samples.html?src=get_var_groups
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variable-groups-samples.html?src=get_by_id
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variable-groups-samples.html?src=get_by_name

Variables Operations

Method Description

get_variables To get the list of variables available for
your organization.

create_variables To add new variables to your
organization.

update_variables To update the details of variables.

delete_variables To delete multiple variables.

get_variable_by_id To get the details of a specific variable by
its unique ID.

update_variable_by_id To update the details of a specific

variable by its unique ID.

delete_variable To delete a specific variable.

get_variable_for_api_name To get the details of a variable by its API
name.

update_variable_by_api_name To update the details of a variable by its
APl name

@ Zoho CRM
zoho.com/crm-

https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variables-samples.html?src=get_variables
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variables-samples.html?src=create_variables
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variables-samples.html?src=update_variables
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variables-samples.html?src=delete_variables
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variables-samples.html?src=get_by_id
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variables-samples.html?src=update_by_id
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variables-samples.html?src=delete_variable
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variables-samples.html?src=get_by_name
https://www.zoho.com/crm/developer/docs/ruby-sdk/v2/variables-samples.html?src=update_by_name

Threading

Threads in a Ruby program help you achieve parallelism. By using multiple threads, you can
make a Ruby program run faster and do multiple things simultaneously.

The Ruby SDK (from version 2.x.x) supports both single-threading and multi-threading
irrespective of a single-user or a multi-user app.

Refer to the below code snippets that use multi-threading for a single-user and multi-user app.

Multi-threading in a Multi-user App

The program execution starts from execute().

The details of "user1" are given in the variables user1, token1, environment1.

Similarly, the details of another user "user2" are given in the variables user2, token2,
environment2.

For each user, an instance of MultiThreading class is created.

When t1.join is called which in-turn invokes the thread which has the details of user1 are
passed to the switch_user function through the func1(). Therefore, this creates a thread
for user1.

Similarly, When the t2.join is invoked , the details of user2 are passed to the switch_user
function through the func1(). Therefore, this creates a thread for user2.

Multi-threading for multi-users is achieved using Initializer’s static switch_user().

O 00 N O U WN -

=
(o]

Initializer.switch_user(user, environment, token, sdk_config)

Initializer.switch_user(user, environment, token, sdk_config, proxy)

require 'ZCRMSDK'
module MultiUser

class MultiThreading
def dinitialize(module_api_name)
@module_api_name = module_api_name
end
def execute(user_signature, environment, token,tokenstore,
sdk_config,resources_path, log, proxy)
Initializer.initialize(user_signature, environment, token,
tokenstore, sdk_config, resources_path, log)

@ Zoho CRM
zoho.com/crm-

11

12
13
14

15

16

17
18
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37

38

tokenl =Authenticator::0AuthToken.new("clientId",
"clientSecret", "REFRESH/GRANT token", TokenType::REFRESH/GRANT,
"redirectURL")

userl = UserSignature.new('abc@zohocorp.com')

environmentl = DC::USDataCenter::PRODUCTION

sdk_configl =
SDKConfig: :Builder.new.auto_refresh_fields(false).pick_1list_validation(t
rue) .build

tl =
Thread.new{funcl(userl,environmentl,tokenl,sdk_configl)}

token2 = Authenticator::0AuthToken.new("clientId",
"clientSecret", "REFRESH/GRANT token", TokenType::REFRESH/GRANT,
"redirectURL")

user2 = UserSignature.new('dfg@zohocorp.com')

environment2 = DC::USDataCenter::PRODUCTION

sdk_config2 =
SDKConfig: :Builder.new.auto_refresh_fields(false).pick_list_validation(t
rue) .build

t2 =
Thread.new{funcl(user2,environment2,token2,sdk_config2)}
tl.join
t2.join
end
def funcl(user,environment,token,sdk_config)
Initializer.switch_user(user,environment,token,sdk_config)
print Initializer.get_initializer.user.email
ro = Record::RecordOperations.new
ro.get_records(nil,nil,@module_api_name)
end
end
end
log =

SDKLog: :Log.initialize(Levels::INFO,"/Users/user_name/Documents/rubysdk_
log.log")

user_signature = UserSignature.new('abc@zohocorp.com')

environment = DC::USDataCenter: :PRODUCTION

token = Authenticator::0AuthToken.new("clientId", "clientSecret",
"REFRESH/GRANT token", TokenType::REFRESH/GRANT, "redirectURL")
tokenstore =
Store::FileStore.new("/Users/user_name/Documents/ruby_sdk_token.txt")
sdk_config =

SDKConfig: :Builder.new.auto_refresh_fields(false).pick_list_validation(t
rue) .build

@ Zoho CRM
- zoho.com/crm-

39 proxy = RequestProxy.new("proxyHost", "proxyPort", "proxyUser",
"password")

40 module_api_name = "Leads"

41 resource_path = "/Users/user_name/Documents"

42 MultiUser::MultiThreading.new(module_api_name).execute(user_signature,
environment, token,tokenstore, sdk_config,resource_path, log,proxy)

Multi-threading in a Single-user App

1 require 'ZCRMSDK'

2 module SingleUser

3 class MultiThreading

4

5 def execute(user_signature, environment, token,tokenstore,
sdk_config,resources_path, log,proxy)

6 Initializer.initialize(user_signature, environment, token,
tokenstore, sdk_config, resources_path, log)

7 tl = Thread.new{funcl("Leads")}

8 t2 = Thread.new{funcl("Deals")}

9 tl.join

10 t2.join

11 end

12 def funcl(module_api_name)

13 ro = Record: :RecordOperations.new

14 ro.get_records(nil,nil,module_api_name).inspect

15 end

16

17 end

18 end

19

20 log =
SDKLog: :Log.initialize(Levels::INFO,"/Users/user_name/Documents/rubysdk_
log.log")

21 user_signature = UserSignature.new('abc@zohocorp.com')

22 environment = DC::USDataCenter::PRODUCTION

23 token = Authenticator::0AuthToken.new("clientId", "clientSecret",
"REFRESH/GRANT token", TokenType::REFRESH/GRANT, "redirectURL")

24 tokenstore =
Store::FileStore.new("/Users/user_name/Documents/ruby_sdk_token.txt")

25 sdk_config =
SDKConfig: :Builder.new.auto_refresh_fields(false).pick_1list_validation(t
rue) .build

26 proxy = RequestProxy.new("proxyHost", "proxyPort", "proxyUser",

@ Zoho CRM
- zoho.com/crm-

27
28

"password")

resource_path = "/Users/user_name/Documents/rubysdk-application"
SingleUser: :MultiThreading.new.execute(user_signature, environment,
token,tokenstore, sdk_config,resource_path, log,proxy)

SDK Sample Code

o b~ W N

o0

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

require 'ZCRMSDK'

require 'date'

class Records

def get_records

Create an 1instance of Log::SDKLog Class that takes two parameters
#1 -> Level of the log messages to be logged. Can be configured by

typing Levels "::" and choose any level from the 1list displayed.
2 -> Absolute file path, where messages need to be logged.

log =
SDKLog: :Log.initialize(Levels::INFO,"/Users/user_name/Documents/rubysdk_
log.log")

#Create an UserSignature 1instance that takes user Email as parameter
user_signature = UserSignature.new('abc@zohocorp.com')

Configure the environment

which is of the pattern Domain.Environment

Available Domains: USDataCenter, EUDataCenter, INDataCenter,
CNDataCenter, AUDataCenter

Available Environments: PRODUCTION, DEVELOPER, SANDBOX

environment = DC::USDataCenter: :PRODUCTION

#Create a Token dinstance

#1 -> OAuth client -1d.

#2 -> OAuth client secret.

#3 -> REFRESH/GRANT token.

#4 -> Token type(REFRESH/GRANT).

#5 -> OAuth redirect URL. (optional)

token = Authenticator::0AuthToken.new("clientId", "clientSecret",
"REFRESH/GRANT token'", TokenType::REFRESH/GRANT, "redirectURL")

#Create an instance of TokenStore.
#1 -> DataBase host name. Default "localhost"

@ Zoho CRM
- zoho.com/crm-

32
33
34
35
36
37

38
39

40
41
42

43

44
45
46

47

48

49

50
51
52

53
54
55
56
57
58

59
60

61

#2 -> DataBase name. Default "zohooauth"
#3 -> DataBase user name. Default "root"
#4 -> DataBase password. Default ""

#5 -> DataBase port number. Default "3306"

store = Store::DBStore.new("hostName", "dataBaseName'", "userName",
"password", "portNumber")

#store =
Store::FileStore.new("/Users/user_name/Documents/ruby_sdk_token.txt"

auto_refresh_fields

if true - all the modules' fields will be auto-refreshed in the
background, every hour.

if false - the fields will not be auto-refreshed in the
background. The user can manually delete the file(s) or refresh the
fields using methods from ModuleFieldsHandler
(Util::ModuleFieldsHandler)

#

pick_list_validation

A boolean field that validates user input for a pick list field
and allows or disallows the addition of a new value to the 1list.

if true - the SDK validates the input. If the value does not exist
in the pick list, the SDK throws an error.

if false - the SDK does not validate the 1input and makes the API
request with the user’s dinput to the pick list

sdk_config =
SDKConfig: :Builder.new.auto_refresh_fields(false).pick_list_validation(t
rue) .build

resource_path = "/Users/user_name/Documents/rubysdk-application”

Create an 1instance of RequestProxy class that takes the following
parameters

1 -> Host

2 -> Port Number
3 -> User Name

4 -> Password

request_proxy = RequestProxy.new('proxyHost', 'proxyPort',
'proxyUser', 'password')

The initialize method of Initializer class that takes the

following arguments
1 -> UserSignature instance

@ Zoho CRM
- zoho.com/crm-

62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
7
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

H OH H O H HF H H
o N o b~ WwN

-> Environment 1in
-> Token instance
-> TokenStore 1ins
-> SDKConfig 1inst
-> resourcePath -
-> Log instance (
-> RequestProxy i

stance

tance

ance

A String

optional)

nstance (optional)

#The following is the dinitialize method

Initializer.initialize(user_signature, environment, token, store,
sdk_config, resources_path, log, request_proxy)
Get instance of RecordOperations Class

ro

= Record: :RecordOp

erations.new

Get instance of ParameterMap Class

pm
pm
pm
hm
hm
DateTi

= ParameterMap.new

.add(Record: :RecordOperations: :GetRecordParam.approved, 'false')
.add(Record: :RecordOperations: :GetRecordParam.converted, 'false')

= HeaderMap.new

.add(Record: :RecordOperations: :GetRecordHeader.If_modified_since,

me.new (2019, 8, 10,

4, 11, 9, '+03:00'))

module_api_name = "Leads"

re
un

sponse = ro.get_records(pm, hm, module_api_name)

less response.nil?
status_code = respo
Get the status co

print "\n Status Code :" + status_code.to_s

if [204, 304].1inclu
print(status_code
return

end

Check if expected

if response.is_expe
Get object from
response_handler

nse.status_code
de from response

de? status_code
== 204 ? 'No Content'

instance is received.
cted

response
= response.data_object

"Not Modified')

Check if expected ResponseWrapper 1instance is received

if response_handler.is_a? Record::ResponseWrapper

records = respo
records.each do
Get the ID

nse_handler.data
| record|
of each Record

print "\n Record ID: "

print record.
created_by =

N

id.to_s
record.created_by

Zoho CRM

zoho.com/crm-

104 # Check if created_by 1is not None

105 unless created_by.nil?

106 # Get the Name of the created_by User
107 print "\n Record Created By User-Name: "
108 print created_by.name

109 # Get the ID of the created_by User

110 print "\n Record Created By User-Id: "
111 print created_by.id.to_s

112 # Get the Email of the created_by User
113 print "\n Record Created By User-Email: "
114 print created_by.email

115 end

116 # Get the CreatedTime of each Record

117 print "\n Record CreatedTime: "

118 print record.created_time

119 # Get the modified_by User instance of each Record
120 modified_by = record.modified_by

121 # Check if modifiedBy 1is not None

122 unless modified_by.nil?

123 # Get the Name of the modified_by User
124 print "\n Record Modified By User-Name: "
125 print modified_by.name

126 # Get the ID of the modified_by User

127 print "\n Record Modified By User-Id: "
128 print modified_by.id.to_s

129 # Get the Email of the modified_by User
130 print "\n Record Modified By User-Email: "
131 print modified_by.email

132 end

133 # Get the ModifiedTime of each Record

134 print "\n Record ModifiedTime: "

135 print record.modified_time

136 tags = record.tag

137 if ltags.nil? && tags.size.positive?

138 tags.each do |tag|

139 # Get the Name of each Tag

140 print "\n Record Tag Name: "

141 print tag.name

142 # Get the Id of each Tag

143 print "\n Record Tag ID: "

144 print tag.id.to_s

145 end

146 end

147 # To get particular field value

@ Zoho CRM
- zoho.com/crm-

148 print "\n Record Field Value: "

149 print record.get_key_value('Last_Name')
150 # To get particular KeyValues

151 print "\n Record KeyValues:"

152 record.get_key_values.each do |key_name, value|
153 print "\n "

154 unless value.nil?

155 print key_name

156 print value

157 end

158 end

159 end

160 end

161 end

162 end

163 end

164end

165Records.new.get_records

Release Notes

Current Version

1. ZCRMSDK -VERSION 2.1.0
Install command

I 1 gem install ZCRMSDK -v 2.1.0

Enhancements
e Supported External ID

Previous Versions

2. ZCRMSDK -VERSION 2.0.0
Install command

1 gem install ZCRMSDK -v 2.0.0

Notes

@ Zoho CRM
zoho.com/crm-

Improve the capabilities of the SDK

Incorporate customer feedback

Upgrade our dependencies

Improve performance

The SDK is highly structured to ensure easy access to all the components.

Each CRM entity is represented by a package, and each package contains an Operations
Class that incorporates methods to perform all possible operations over that entity.
SDKException - A wrapper class to wrap all exceptions such as SDK anomalies and other
unexpected behaviors.

StreamWrapper - A wrapper class for File operations.

APIResponse - A common response instance for all the SDK method calls.

@ Zoho CRM
zoho.com/crm-

